viernes, 13 de junio de 2014

ECUACIONES EN LA RECTA

Ecuación general de la recta
Esta es una de las formas de representar la ecuación de la recta.
De acuerdo a uno de los postulados de la Geometría Euclidiana, para determinar una línea recta sólo es necesario conocer dos puntos (A y B) de un plano (en un plano cartesiano), con abscisas (x) y ordenadas (y).
Ahora bien, conocidos esos dos puntos, todas las rectas del plano, sin excepción, quedan incluidas en la ecuación Ax + By + C = 0
Que también puede escribirse como ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta, como lo afirma el siguiente:

Teorema
La ecuación general de primer grado Ax + By + C = 0, donde A, B, C pertenecen a los números reales( );  y en que A y B no son simultáneamente nulos, representa una línea recta.


Ecuación principal de la recta
Cada punto (x, y) que pertenece a una recta se puede representar en un sistema de coordenadas, siendo x el valor de la abscisa e y el valor de la ordenada. (x, y) = (Abscisa , Ordenada)
Ejemplo: El punto (–3, 5) tiene por abscisa –3 y por ordenada 5.
Recordado lo anterior, veamos ahora la ecuación de la recta que pasa solo por un punto conocido y cuya pendiente (de la recta) también se conoce, que se obtiene con la fórmula
y = mx + n
Ejemplo :
Hallar la ecuación de la recta que tiene pendiente m = 3 e intercepto b = 10.
Tenemos que hallar la ecuación de la recta, esto es, y = mx + b.
m = 3  y  b = 10 y sustituimos en la ecuación
y = 3x + 10.
La ecuación que se pide es y = 3x + 10.
Nótese que esta forma principal (simplificada o explícita) también podemos expresarla como una ecuación general:
y – 3x – 10 = 0, la cual amplificamos por –1, quedando como
– y + 3x + 10 = 0, que luego ordenamos, para quedar
3x – y  +  10 = 0  
Ecuación de la recta que pasa por dos puntos
Sean P(x1, y1) y Q(x2, y2) dos puntos de una recta. Sobre la base de estos dos puntos conocidos de una recta, es posible determinar su ecuación.
Para ello tomemos un tercer punto R(x, y), también perteneciente a la recta.
Como P, Q y R pertenecen a la misma recta, se tiene que PQ y PR deben tener la misma pendiente. O sea y   luego, la ecuación de la recta que pasa por dos puntos.






No hay comentarios:

Publicar un comentario